

ASSOCIATION OF

ENGINEERING GEOLOGISTS

Southern California Section

"Serving Professionals in Engineering, Environmental and Groundwater Geology
Since 1957"

NEWSLETTER - DECEMBER 1997

OFFICERS

CHAIR
David Ebersold
(818) 796-9141
dave.ebersold
@us.mw.com

VICE CHAIR Thomas L. Slosson 818-376-6540

TREASURER Wendy Schell (714) 250-1421

SECRETARY Martin Lieurance 805-499-5035

-INSIDE-December Meeting Information

CHAIRMAN'S COLUMN

By Dave Ebersold

Members, it is with regret that I inform you that Norm Tilford, AEG's Executive Director, is missing in Texas. He departed from College Station for Van Horn, Texas piloting his plane alone at 8:00 pm on Thursday, November 13, 1997. He failed to arrive at Van Horn as scheduled and was reported missing by his students at the end of Friday, November 14, 1997. He is presumed to be down somewhere within a 9,000 square mile area of central and west Texas. The Civil Air Patrol has initiated an extensive air and ground search but has not yet found any sign of Norm or his aircraft. As of November 22, 1997, the Civil Air Patrol had completed over 600 flight hours and searched over more than 8,000 square miles of Texas in the most extensive search in Texas history. I will provide more information as it becomes available.

At the last meeting, I mentioned the June 1998 ballot initiative which, if passed, is expected to result in the State of California becoming the largest engineering "firm" in the world. This initiative is being sponsored by Professional Engineers in California Government (PECG), the union that represents State engineers. Owing to mandatory payroll deductions which have been in effect for these employees for the past couple of years, it is expected that a war chest on the order of \$5 million has been collected to fight for passage of this initiative.

What can you do? Educate your friends, neighbors and coworkers about this issue. Tell them the truth, that it is bad for business, bad for public health and safety and bad for the economy. In addition, please send money to fight this initiative. How do you do this? Check out CELSOC's web page at www.celsoc.org. It has all the info, including a link to PECG's homepage so that you can get the full story! This is no joke, people!

Please see the article on FIELDS OF EXPERTISE - ANOTHER THREAT TO GEOLOGIC PRACTICE. You need to <u>write letters</u> NOW! Addresses are contained in the article. THIS IS IMPORTANT! See you at the December meeting!

REVIEW OF DR. BISHOP'S PRESENTATION

NOVEMBER 1997 SOUTHERN CALIFORNIA SECTION MEETING

Analysis of Translational Landslides Slipsurface Using Balanced Cross-sectional Analysis

Dr. Kim Bishop was the AEG's Southern Section's Guest Speaker at the November Dinner Meeting held at the Airtel Plaza Hotel in Van Nuys, California. Dr. Bishop discussed the distortion and movement of the cross-sectional area associated with a rotational and/or translational landslide and how this could be used to evaluate the probable depth to the slide plane. Dr. Bishop noted that it was not always feasible to put in landslide downhole borings during investigations or to define the slide plane depth from boring samples alone. result, other methods to investigate the depth of the landslide had to be found.

included field Dr. Bishop's methods measurements of the change of vertical and horizontal elevations of segments of the slidemass from their original positions to their new positions downslope. He used vertical slip shear (no distortion of segments) analysis and simple shear analyses (with distortion) to present examples of the crosssectional analyses that he had performed. The equation given was: H = Area A/X, where H = the change in vertical elevation (drop) of the landslide; X = the downslope shift (angular translation and/or rotation) of the slide-block segments; and A = the calculated cross-sectional area of each shifted slide-block from its original position. The area of the segments should remain nearly the same after sliding as they were before the slide, thus making the calculation of the slide plane depth possible. analysis is similar to that of A. W. Bishop (1955), "The use of the slope circle in the

stability analysis of slope failure" (see references at end of article.)

Dr. Bishop acknowledged that analyses using three different methods on a particular landslide site resulted in calculated depths of 115, 129 and 151 feet. The slide plane was found to be approximately located between the 129 and 151 foot depth. This amount of discrepancy, he said, could be significant during subsequent remediation efforts (i.e., setbacks, cut and fill, etc.).

This method could be combined with the procedures usually employed by geologists, to give a clearer picture of the conditions present in the complex system created by the landslide. The method presented was used to illustrate its effect on the "ideal 2-D" translational landslide, and some real-life situations such as perched water, deflation and friction were not discussed for the sake of time and complexity.

A hearty Thank You to Dr. Bishop for his timely talk. Winter is upon us and the possibility of heavy rains could give rise to the need for this method of analysis.

This review was prepared by Linda Tandy, Editor, and Terry Allen Jones. Mr. Jones is an AEG Member who has recently completed his Master Degree in Interdisciplinary studies in Geophysics at CSUN. His Thesis is; "Seismicity of the Western Transverse Ranges of Southern California: January 1981 to January 1995".

References

Lee, T. C., and Sadler, P. M., 1989, <u>A review of the basic mechanics of slope failure</u>: Landslides in a semi-arid environment, with emphasis on the inland valleys of Southern California, Publications of the Inland Geologic Society v. 2, pp. 150-160.

Bishop, A. W., 1955, *The use of the slip circle in the stability analysis of slopes*: Geotechnique, v. 5, pp. 7-17

FIELDS OF EXPERTISE

ANOTHER THREAT TO THE PRACTICE OF GEOLOGY

The Spring 1997 Bulletin of the State Board of Registration for Professional Engineers and Land Surveyors (BORPELS) printed a "Fields of Expertise Document," which was originally developed for in-house use by the geology and engineering boards to decide jurisdiction in cases of unlicensed practice. Much to the surprise of the State Board of Registration for Geologists and Geophysicists (BRGG), the document is now being used in circumstances never intended by its original authors.

Cindi Christenson, Executive Officer of BORPELS, wrote in an October 8, 1997, letter to Dalton Pollard, Executive Officer of BRGG: "... the document is not being used for jurisdiction over unlicensed practice. However, the document is frequently referred to at outreach meetings and when answering inquiries received by phone or in writing. In general, it has become a resource guide and an outreach tool used to assist staff, local government officials, practitioners and consumers differentiate between the practices of civil engineering and geology. The need for such a document is evidenced by some of the correspondence received regarding this issue where the practitioners themselves are confused over their own limitations of practice as imposed by statute."

The document is dangerous. For example, it states that in ground and water contamination investigations, "design of site characterization studies" CANNOT BE PERFORMED BY A GEOLOGIST. Last month the BRGG decided to "non-adopt" the "Fields of Expertise" document. In the meantime, BORPELS and other entities continue to use the document. The result is increasing restrictions on the practice of geology. The document as it appeared in the Spring 1997 BORPELS Newsletter is included on the following pages.

Send letters TODAY to both boards at the following addresses:

Board of Registration for Professional Engineers and Land Surveyors 2535 Capitol Oaks Drive, Suite 300, Sacramento, CA 95833-2926 MAILING ADDRESS: P.O. Box 349002, Sacramento, CA 95834-9002

Telephone: (916) 263-2222 Calnet: 8-435-2222

Fax: (916) 263-2246 or (916) 263-2221

State Board of Registration for Geologists and Geophysicists 2535 Capitol Oaks Drive, Suite 300A Sacramento, CA 95833-2926

Telephone: (916) 263-2113

Fax: (916) 263-2099

Here is the document as it appeared in the Spring 1997 BORPELS Newsletter.

The following memorandum was prepared to assist the Board of Registration for Professional Engineers and Land Surveyors and the Board of Registration for Geologists and Geophysicists to clarify and differentiate between the responsibilities and duties of registered civil engineers and geologists. This document reviews the "gray" areas where civil engineering and geology overlap and lists activities that are normally performed by both professions. This document also identifies activities within the scope of professional practice of civil engineering and geology. As such, this memorandum is a statement of both respective boards' philosophy, intent, and general collective opinion.

The following tables may be used to assist either boards' staff when a dispute or complaint is filed, and can be used or modified depending on the circumstances. Individual professionals in each discipline should only practice in the field of expertise in which they are competent. This document does not refer to the practice of geophysics.

CLASSIFICATION AND PHYSICAL PROPERTIES

Registered Geologist

Rock description and classification

Origins of rock

Source area

Both (RG and CE)

Visual soil description

Wentworth - Unified soil classification system

and testing

Registered Civil Engineer

Testing of earth materials for physical properties

ROCK MECHANICS

Registered Geologist

Description

Rock structure

Qualitative performance of rock masses

Both

In-situ testing

Regional-Local

The terms qualitative and quantitative, as used in several places in the following table, should be understood in the following sense:

Quantitative is defined as concerned with the measurement of phenomena; Qualitative is defined as the assessment of a phenomena without measurement.

These policies and guidelines are not intended to be rules or standards of application rigidly adhered to without discretion. Likewise, such policies are not intended to implement, interpret, or make specific the law enforced or administered by either board, and are not intended to govern either boards' procedures. The foregoing policies are merely recommendations which incorporate the collective opinion of both boards at a particular moment in time. Consequently, the foregoing guidelines are informational and are not regulations. The guidelines have no force of law and are not intended to set standards of practice. Language used has been carefully gleaned from mandatory requirements.

Registered Civil Engineer

Quantitative performance of rock masses, e.g. rock testing, stress distribution and rebound evaluation

SOIL AND ROCK MAPPING

Registered Geologist

Geologic mapping

Geomorphology

Subsurface geology and Stratigraphy

Air photo geologic interpretations

Both

Geometric relationships

Soil type mapping

Registered Civil Engineer

Photogrammetric interpretations

SLOPE STABILITY

Registered Geologist

Interpretative stability of rock cut slopes Geologic and geomorphic analyses

Spacial relationship

Both

Excavation in hilly terrain

Causative agents

Natural slopes

Registered Civil Engineer

Quantitative slope design and analysis

PROJECT PLANNING

Registered Geologist

Development of geologic parameters

Geologic feasibility

Both

Evaluation of effects of geologic conditions on

proposed projects

Registered Civil Engineer

Engineering of effects of subsurface conditions

on proposed project

Economic studies

SURFACE WATERS

Both

Stream description

Silting potential

Erosion potential

Source of base flow

Sedimentary processes

Source of material

Registered Civil Engineer

Volume and rate of runoff

Design of works for control

Coastal and river engineering

Hydrology

GROUNDWATER

Registered Geologist

Hydrogeology

Geologic structural controls

Both

Occurrence and Direction of movement

Drainage

Mathematical treatment of well systems

Well design

Well Monitoring

Subsidence

Development concepts

Field permeability; Transmissivity

Underflow studies

Specific yield

Regulation of supply

Storage computation

Water quality

Characteristics of water-bearing and non-water

bearing materials

Dewatering systems

Registered Civil Engineer

Engineering hydrology

Filter Design

Economic considerations

Laboratory permeability

EARTHQUAKES AND GROUND

VIBRATIONS

Registered Geologist

Location of faults

Evaluation of potential fault activity

Qualitative ground vibration analysis

Seiches and tsunamis

Qualitative evaluation of lateral spreading and

liquefaction

Both

Seismicity

Historic record of earthquakes

Ground Motion: Deterministic and probabilistic

analysis

Registered Civil Engineer

Ground response to seismic activity

Seismic design criteria for structures

Laboratory soil dynamics tests

Quantitative ground vibration analysis

Liquefaction mitigation

Quantitative evaluation of lateral spreading and

liquefaction

SUBSURFACE EXPLORATION

Registered Geologist

Down-hole observations for structure geometry

Fault trenching

Both

Planning

Supervision

Observation

Logging of borings or trenches

Sampling

In-situ testing

CONSTRUCTION OBSERVATION

Registered Geologist

Rock grouting

Both

Chemical grouting

Excavation in rock material

Tunnel construction

Remediation of contaminated sites

Conduits

Foundation conditions

Site grading and excavations

Registered Civil Engineer

Pavements

Earthwork compaction and soil grouting

EXPANSIVE MATERIALS

Registered Geologist

Qualitative evaluation of expansion potential

Both

Visual identification

Geochemical effects

Expansive Bedrock

Registered Civil Engineer

Lab testing

Quantitative evaluation of expansion potential

Design of mitigation

REGULATORY REQUIREMENTS

Registered Geologist

Provide geology input as required

Registered Civil Engineer

Provide engineering analysis as required

EMBANKMENT FILL

Both

Visual classification

Evaluation of borrow sites

Seepage control measures

Removal of unsuitable material

Registered Civil Engineer

Design and construction

Quality

Specifications

Evaluation of potential deformations

Evaluation of stability and foundation

Evaluation of borrow material

INTERPRETATION AND INSTALLATION OF INSTRUMENTATION

Both

Vadose zone monitoring

Water level recorders

Slope inclinometers

Rock stress and deformation devices

Piezometers and observation wells

Settlement movements

Seismometers and accelerometers

Water quality monitoring

Tiltmeters

Stream gages

Meterology stations

Registered Civil Engineer

Pore water pressure monitoring

Soil pressure devices

Pile load testing

Vibration monitoring and analysis

Tensioning tie-backs

GEOSYNTHETICS

Both

Field welding

Installation

Filtering properties

Registered Civil Engineer

Interpretation of strength

Liner design

Flexible pavement design

Soil reinforcement design

GROUND AND WATER CONTAMINATION

Both

Well logging

Water observations

Well design, installation, analysis and

abandonment

Toxic pits

Toxic fluid monitoring

Underground tanks

Solid waste disposal sites

Waste discharge to land

Site characterizations

Plume characteristics

Broad studies encompassing planning,

coordination of disciplines including

professional engineers, analysis and findings,

preparation of conclusions and

recommendations

Registered Civil Engineer

Design of site characterization studies

Design of remediation systems

GEOTECHNICAL AND ENVIRONMENTAL DRILLING SERVICES

CME-75 Auger Drill Rig Geoprobe® Sampling Services 40-Hour Safety Trained Personnel

(626)930-1200 Monrovia, California

SOLID WASTE FACILITIES

Registered Geologist

Aguifer characterization

Faulting

Fault age dating

Landslide geometry

Geology reports required by regulation

Both

Pump testing

Flow nets

Water sampling

Contaminant transport

Air sparging

Filters

Water budget

Deterministic and probabilistic analysis

Registered Civil Engineer

Construction Quality Assurance (CQA) plan and

administration

Drainage design

Plans and specifications

Slope stability analysis

Leachate and gas collection design

Contaminate design

Engineering reports required by regulation

AREAS OF JOINT PRACTICE

Site Selections

Planning investigations

Conducting field exploration

Selecting samples for testing

Interpreting data

Describing and explaining site conditions

Input to Urban Planning

Input to environmental studies

CAREER OPPORTUNITIES

Pacific Soils Engineering, Inc. is seeking entry level geologists with a B.S. in Geology.

Fax resume to (714) 220-9589.

Attention: Ted Wolfe.

Lindmark Engineering, Inc. is hiring engineers and geologists. Successful applicants must have environmental experience and excellent writing skills. Fax resume to (818) 365-0296.

COMMITTEE CHAIRS

MEMBERSHIP

John Whitney 714-647-0277

LEGISLATIVE & REGULATORY AFFAIRS

Robert Hollingsworth

818-889-0844

grover15@ix.netcom.com

FIELD TRIPS

Kim Bishop 213-343-2409

SHORT COURSES

Sue Tanges 619-442-8022

EDUCATION

Ali Tabidian

818-677-2536

PUBLICATIONS

Rudy F. Ruberti 818-785-2158

EDITOR

Linda L. Tandy
213-478-1329
LASTRATA@aol.com
Deadline for submittals to the
January 1997 Newsletter:
December 12, 1997.
Please submit via e-mail
or on disc and via snail mail.

Solutions Land Water

Consulting Geohydrologist Engineering Geologist Water Quality Specialist

Sanford L. Werner

Registered Geologist Certified Engineering Geologist

21031 Blythe St., Canoga Park, CA 91304 (818) 998-8178

ZIP	-A-	Ð	IP
-----	-----	---	----

Combination protractor, scales and most efficient apparent dip calculator

Only \$4.00 each, 2-10: \$3.50; 11+: \$3.00; 50+: \$2.50 Brochure describes ZIP-A-DIP, equal angle stereonet plotter, and stratigraph. PLEASE NOTE NEW ADDRESS BELOW!

Brochure only ZIP-A-DIP quantity total cost Name

Address

Address_

To: ZIP-A-DIP, 3891 Ashford Dr. Eugene, OR 97405

LETTER TO THE EDITOR

Dear Linda.

Congratulations for taking on AEG's Southern California Section's Newsletter. The MWD field trip went well under your leadership. So the newsletter should also.

Enclosed is a letter I sent to the Metropolitan Water District along with several photographs. No, I have not heard a word, and do not expect any.

Due to no fault of yours, the last three or four "National" AEG Newsletters had no Southern California Section newsy tidbits. Personally, this is shameful for the largest (500+ members) section. If you improve the track record, AEG will be indebted to you.

I had a fantastic photo of you, in hard-hat, at MWD's damsite. I was hoping you'd come to a meeting so I could give it to you personally. I lost it at one of the meetings.

Sincerely, Howard A. "Buzz" Spellman Dear Buzz,

Thank you for your letter and support. It is with pleasure that I take over the Editor duties for 1997-1998. A copy of your letter to MWD is reproduced below.

I would like to take this opportunity to thank you for your years of service to AEG's Southern California Section. Without your dedication and hard work this Section would not be what it is today.

I, too, enjoyed the field trip to the Domenigoni Valley Reservoir Project (now known as the Eastside Reservoir Project). I'm looking forward to the 1998 field trip. Any field trip suggestions should be sent to this newsletter or to Kim Bishop. Phone numbers are shown on page 7.

I sure wish I had shown up for a meeting to get my picture! However, I am looking forward to seeing you at the meetings in 1998!

Sincerely, Linda Tandy, Editor

09 June 1997

Jim Gilmore, Eastside Reservoir Project Metropolitan Water District P.O. Box 54153 Los Angeles, CA 90054-0153

Subject: Association of Engineering Geologists Field Trip, April 26, 1997

Dear Jim, and Leaders All:

A belated thank you for giving about 44 "rockhounds" the cooks tour of what I recall as the Domenigoni Valley Reservoir Project. By whatever name, or cost, southern Californians applaud MWD's forethought in storing 800,000 acre-feet in case of droughts, earthquake emergency, IID and the like.

Enclosing both ends of the valley with the East Dam and West dam is unique in my dam building experience (Bechtel Hydroelectric and Converse Consultants). You are to be commended. Grouting, cutoffs, foundation geology, embankment materials and Saddle dam conditions are impressive (especially linkage of grouting electronically for daily progress report "takes").

Southern California geologists can now be your ambassadors in Sacramento. Jim, I can not speak for everyone on the bus, but those that I did enjoyed the efforts of your field staff; moreso knowing most had Saturday off.

Appreciatively,

Howard A. "Buzz" Spellman

cc: Kerry Cato

December Meeting WEDNESDAY DECEMBER 10, 1997

Joint Meeting with ASCE Geotechnical Engineering Division San Diego Section

• 6:00

Social Hour

• 7:00

Dinner

• 8:00

Program

Temecula Creek Inn

44501 Rainbow Canyon Road, Temecula, California

Directions: Take I-15 south to Hwy 79 South (NOT Hwy 79 north/Winchester Road) and go east, to Pala Rd (3rd light). Go right on Pala Road to Rainbow Canyon Road and turn right. The Temecula Creek Inn is about 1/4 mile down on the right.

Call the receptionist at Geotechnics

(626) 568-6041

Space is limited so please call early! Please make reservations by Friday, December 5, 1997 Dinner: Roasted Pork Loin, Seafood Newburg or 4 Cheese Vegetable Lasagna. When making reservations, please specify choice of dinner.

Cost \$25.00 per person

Students \$15.00 per person

PROGRAM TOPIC Slope Failures and Treatments SPEAKER Mr. Roy Hunt, P.E., P.G., C.P.G.

Mr. Hunt has 40 years of professional experience including senior positions with Joseph S. Ward and Associates, Woodward-Clyde Consultants, and Technosolo S.A., Rio de Janeiro, Brazil. In private practice, Mr. Hunt has provided consultation to NUCLEN for two new nuclear power plants in Brazil, as well as offshore mooring structures in the Philippines and Brazil. He has provided consultation on landslides for Louis Berger Inc. in Indonesia, Interamerican Development Bank in Bolivia and Ecuador, and the FHWA and the U.S Justice Department in Puerto Rico. Since 1989, he has been an Adjunct Professor of Engineering Geology and Rock Mechanics at the Graduate School of Civil Engineering, Drexel University, Philadelphia, PA.

He holds an M.A. in Engineering from Columbia University in New York and a B.S. in Geology and Physics from Upsala College n East Orange, NJ. He is a Registered Professional Engineer in NJ, NY, and PA, a Registered Professional Geologist in CA, DE, PA, and Brazil, and a Certified Professional Geologist. Professional affiliations include ASCE (Life Member), AEG (Member since 1971), and the AIPG. Awards include AEG's prestigious Claire P. Holdredge Award for his two books in 1984, Geotechnical Engineering Investigation Manual (1984) and in 1988, Geotechnical Engineering Techniques and Practices (1986), both published by McGraw-Hill Books Co., New York.

His presentation will cover predictions, causes, and treatments of failures in soil and rock slopes. Soil slopes will include slump slides in colluvial and residual soils, debris avalanches in residual soils over rock, and long planar slides in marine shales. Rock slopes will include a brief review of Rock Mass Rating systems to arrive at slope treatments as a function of rock quality before and after rock mass excavation. The methodology of terrestrial stereophotography will be introduced.

Association of Engineering Geologists

Southern California Section

Linda L. Tandy AEG Newsletter Editor 1341 Hill Drive Eagle Rock, CA 90041

thiallantanidatanidatalanantilaat

FIRST CLASS POSTAGE

